Graded Simple Lie Algebras and Graded Simple Representations
نویسندگان
چکیده
For any finitely generated abelian group Q, we reduce the problem of classification of Q-graded simple Lie algebras over an algebraically closed field of “good” characteristic to the problem of classification of gradings on simple Lie algebras. In particular, we obtain the full classification of finite-dimensional Q-graded simple Lie algebras over any algebraically closed field of characteristic 0 based on the recent classification of gradings on finite dimensional simple Lie algebras. We also reduce classification of simple graded modules over any Q-graded Lie algebra (not necessarily simple) to classification of gradings on simple modules. For finite-dimensional Q-graded semisimple algebras we obtain a graded analogue of the Weyl Theorem.
منابع مشابه
Arithmetic Deformation Theory of Lie Algebras
This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...
متن کاملThin Coverings of Modules
Thin coverings are a method of constructing graded-simple modules from simple (ungraded) modules. After a general discussion, we classify the thin coverings of (quasifinite) simple modules over associative algebras graded by finite abelian groups. The classification uses the representation theory of cyclotomic quantum tori. We close with an application to representations of multiloop Lie algebras.
متن کاملDeformation of Outer Representations of Galois Group
To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...
متن کاملUniversal Central Extension of Current Superalgebras
Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras are very impo...
متن کاملFe b 20 04 Structure of a new class of non - graded infinite dimensional simple Lie algebras
A new class of infinite dimensional simple Lie algebras over a field with characteristic 0 are constructed. These are examples of non-graded Lie algebras. The isomorphism classes of these Lie algebras are determined. The structure space of these algebras is given explicitly.
متن کامل